Conditional Densities: Example

Let X and Y be RVs on the unit square [0, 1] x [0, 1] with joint density function
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From these we get
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To calculate the correlation coefficient, first get
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indicating a weak negative correlation.
The best linear approximation to Y in terms of X is Y* ~ pX* giving
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The best approximation in terms of any function of X is Y ~ E(Y|X). For this we need the
conditional distribution Y|X, for which the density function is
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From this we get
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We can also use fy|x to calculate the conditional variance of Y.
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At least that’s what Maxima tells me.



