Conditional Densities: Example

Let X and Y be RVs on the unit square $[0,1] \times[0,1]$ with joint density function

$$
f_{X, Y}(x, y)=x+\frac{3}{2} y^{2} .
$$

Then the marginal densities are

$$
\begin{aligned}
& f_{Y}(y)=\frac{3 y^{2}+1}{2} \\
& f_{X}(x)=\frac{2 x+1}{2} .
\end{aligned}
$$

From these we get

$$
\begin{array}{cc}
\mu_{X}=\mathrm{E}(X)=\frac{7}{12} & \mu_{Y}=\mathrm{E}(Y)=\frac{5}{8} \\
\sigma_{X}=\mathrm{SD}(X)=\frac{\sqrt{11}}{12} & \sigma_{Y}=\mathrm{SD}(Y)=\frac{\sqrt{73}}{8 \sqrt{15}} .
\end{array}
$$

To calculate the correlation coefficient, first get

$$
\mathrm{E}(X Y)=\int_{0}^{1} \int_{0}^{1} x y\left(x+\frac{3}{2} y^{2}\right) \mathrm{d} x \mathrm{~d} y=\frac{17}{48},
$$

giving

$$
\begin{gathered}
\operatorname{Cov}(X, Y)=\mathrm{E}(X Y)-\mu_{X} \mu_{Y}=-\frac{1}{96} \\
\rho=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=-\frac{\sqrt{15}}{\sqrt{11} \sqrt{73}}=-.13667,
\end{gathered}
$$

indicating a weak negative correlation.
The best linear approximation to Y in terms of X is $Y^{*} \approx \rho X^{*}$ giving

$$
Y \approx \frac{5}{8}-\frac{\sqrt{73}}{8 \sqrt{15}}(.13667)\left(\frac{X-\frac{7}{12}}{\frac{\sqrt{11}}{12}}\right)=-.1364 x+.7045
$$

The best approximation in terms of any function of X is $Y \approx \mathrm{E}(Y \mid X)$. For this we need the conditional distribution $Y \mid X$, for which the density function is

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}=\frac{3 y^{2}+2 x}{2 x+1} .
$$

From this we get

$$
\mathrm{E}(Y \mid X)=\int_{0}^{1} y \frac{3 y^{2}+2 X}{2 X+1} \mathrm{~d} y=\frac{4 X+3}{4(2 X+1)}
$$

We can also use $f_{Y \mid X}$ to calculate the conditional variance of Y.

$$
\begin{gathered}
\mathrm{E}\left(Y^{2} \mid X\right)=\int_{0}^{1} y^{2} \frac{3 y^{2}+2 X}{2 X+1} \mathrm{~d} y=\frac{10 X+9}{15(2 X+1)} \\
\operatorname{Var}(Y \mid X)=\mathrm{E}\left(Y^{2} \mid X\right)-\mathrm{E}(Y \mid X)^{2}=\frac{80 X^{2}+88 X+9}{240(2 X+1)^{2}} .
\end{gathered}
$$

At least that's what Maxima tells me.

